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Cluster size diversity, percolation, and complex systems
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Diversity of cluster size has been used as a measurement of complexity in several systems that generate a
statistical distribution of clusters. Using Monte Carlo simulations, we present a statistical analysis of the cluster
size diversity and the number of clusters generated on randomly occupied lattices for the Euclidean dimensions
1 to 6. A tuning effect for diversity of cluster size and critical probabilities associated with the maximum
diversity and the maximum number of clusters are reported. The probability of maximum diversity is related to
the percolation threshold and several scaling relations between the variables measured are reported. The
statistics of cluster size diversity has important consequences in the statistical description of the Universe as a
complex system.@S1063-651X~99!08709-7#

PACS number~s!: 05.40.2a, 05.10.Ln, 05.70.Fh, 05.70.Jk
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I. INTRODUCTION

Diversity is probably one of the main features of intere
in many natural phenomena. The richness of patterns
behaviors in many dynamical systems have drawn the in
est of many researchers in various branches of science,
in biology @1#, evolution@2,3#, self-organization and cellula
automata@4,5#, fractals @6,7#, and nonequilibrium phenom
ena @8,9#. The concept of diversity is universal in variou
fields of human knowledge. Similarly, the notion of com
plexity is present in a variety of natural phenomena and
be associated with several properties of a system. In m
situations, complexity is related to the diversity of si
scales. Presently, there is no generally accepted definitio
a complexity measure, even though several studies have
made in attempt towards a complexity measurement@10–
15#. However, these studies agree that there should ex
complexity measure, which attains its maximum value
configurations in between a completely ordered and dis
dered state.

In the last few years, diversity of size or mass has b
studied in several dissipative processes and cellular auto
that generate a distribution of fragments and are of interes
physics @16,19#, chemistry @8#, biology @18#, and ecology
@16,17#. Recently, Gomes and co-workers@14,15# proposed
the diversity of size of fragments as a measurement for c
plexity in aggregation and fragmentation processes. Th
studies are of interest since they capture the idea of a c
plex configuration in between a completely connected str
ture ~initial state, ordered! and completely disconnected sta
with no structure~disordered!.

In this paper, we are interested in the diversity and
scaling behavior of cluster sizes on randomly occupied
tices. Note the similarity with the problem of aggregati
and fragmentation processes, even though in the system
sidered there are no dynamics involved. In fragmentat
the process starts with a single connected cluster that is
ken up into various smaller clusters following a specific
gorithm. This procedure ends when all of the mass is c
sumed or just small and uniform clusters are prese
depending if the fragmentation dynamics follows a consum
tion of mass or a conservation of mass process@8#. On the
PRE 601063-651X/99/60~3!/2684~15!/$15.00
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other hand, aggregation is a process opposite to fragme
tion, where starting from a empty lattice one generates
aggregate following certain occupation dynamics@9#. In both
systems, the processes evolve through time differently fr
randomly occupied lattice in which the measurements
taken over the probability.

Another point of interest is that randomly occupied la
tices are used as initial configuration in most of the stud
on cellular automata. In this way, a proper understanding
the clustering at the initial configuration may give more i
sight into some aspects of their dynamics, as shown
@16,17#. Moreover, the system analyzed is closely related
the percolation problem@24#, even though in this case we ar
interested in the behavior of the number and the diversity
clusters size other than the spanning or percolation clus
Still some connections exist between the two models, and
show a relation between the point of geometric phase tra
tion, i.e., the appearance of the spanning cluster, and
point of maximum diversity and maximum entropy.

Recently, we reported the occurrence of critical probab
ties associated with the maximum of diversity,Dmax, and the
maximum number of clusters,Nmax, on a randomly occupied
square lattice@20,21#. In this paper, we extended those r
sults and determined the values of the critical probabilit
for lattices with higher dimensionality. We show the beha
ior of the cluster size diversity and total number of cluste
on these lattices and the scaling relations between the v
ables of interest. Also an entropic measurement based on
probability that an arbitrary occupied site is part of ans-site
cluster is derived.

The structure of this paper is as follows: in Sec. II w
describe and mathematically define a quantitative meas
ment that characterizes complexity in this system. In Sec
we describe the computer simulations. In sec. IV the relat
between cluster size diversity and percolation, describing
tuning effect in diversity, the entropic measurement of t
system, and the critical probability associated with the va
ables measured. In Sec. V we analyze the scaling relat
and offer some evidences on the statistical description of
universe as complex systems. Finally, in Sec. VI we g
concluding remarks.
2684 © 1999 The American Physical Society
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II. DIVERSITY AND COMPLEXITY

Diversity is one of the most remarkable and importa
characteristics in nature. It manifests in several ways an
characterized by a range of different kinds of patterns exh
ited by a system. To define diversity one must work with
function of interest such as a physical property. This funct
defines the type of pattern structures analyzed in the sys
and is generally defineda priori by an observer. As a resul
diversity as a measurement of complexity presents an in
ent subjective constraint.

On randomly occupied lattices diversity can be defined
the amount of different cluster sizes at a fixed probability
occupationp. Here a cluster is defined as a collection
occupied sites connected by the nearest neighbors. The
tem in consideration has no dynamics and no correla
between the sites; consequently, the structural comple
can be well defined as the amount of different cluster si
on the lattice. Moreover, other definitions could be adopt
such as a differentiation on cluster forms or lattice anim
@21,22#.

The mathematical definition for the total number of clu
ters is given by

N~p!5K (
s

N~s,p!L , ~1!

and for the diversity of the mass of a cluster,

D~p!5K (
s

Q@N~s,p!#L . ~2!

In these expressions,N(s,p) is the number of clusters o
sizes, in a single experiment. For occupation probabilityp;
Q(x), the Heaviside function is defined asQ(x)51 if x
.0 andQ(x)50 otherwise, and the average^ . . . & is over
different experiments. This definition is suitable because
a quantifiable macroscopic physical measurement.

Even though cluster size diversity is an appropriate m
surement of complexity for the system studied, we sho
keep in mind that it has limitations as a general definition
complexity, since the pattern structure is defineda priori and
no correlation between these patterns are taken into acco

III. SIMULATIONS

We report the behavior of the number of clusters a
diversity of cluster size by performing Monte Carlo simul
tions on Euclidean lattices with dimensions 1 to 6. The l
tices were randomly occupied with probability ranging fro
p50.01 top50.99 with steps of 0.01. However, in the r
gion near the maximum of cluster size diversity and
maximum number of clusters, we used a more precise v
of p with steps of 0.002. For the one-dimensional case
probability was extended up top50.999 99. In these simu
lations, we have generated lattices with total number of s
varying from the order of 103 to 107 with averages taken on
6000 to 50 experiments.

We applied the well-known Hoshen-Kopelman algorith
@23# to identify the different cluster sizes, using an IBMRISC

computer. The present simulations do not require mem
allocation for the whole lattice, since the generated latt
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does not follow a dynamics~correlation in time!, nor do the
sites depend on another site state~correlation in space!. Con-
sequently, it was possible to perform simulations in ve
large lattice sizes without great computational demand.

IV. CLUSTER SIZE DIVERSITY AND PERCOLATION

A. Tuning effect

From the point of view of clusters generated by random
occupying the sites of a lattice, the probability of occupati
p determines the structures of the clusters in the syst
Here, a low value ofp will generate a lattice occupied with
various small disconnected clusters of equal size as show
Fig. 1~a!, while with p close to 1 a totally connected single
cluster appears, Fig. 1~d!. An intermediate value ofp gives a
configuration with maximum cluster size diversity, Fig. 1~b!.
The size of the latticeL determines the possible amount
cluster diversity, since increasing the lattice size results in
increase in the range of the cluster size scales. Conseque
by changing the parametersL andp we attain a configuration
not only with great diversity, but also a state in which
spanning cluster percolates the lattice.

In Fig. 2 we show the log-log plot of the diversity densi
D/Ld versus probability of occupation for dimensions 1 to
and different values ofL, in which d is equal to the dimen-
sion of the lattice. Diversity increases exponentially, attain
maximum, and then decreases. For every curve the m
mum diversity was obtained in a defined probability. T
shape of these curves shows that the rate of increase in
versity is higher at the maximum region. An increase on
sizeL of the system implies a smaller region ofp associated
with a high diversity or complexity. Consequently, clust
size diversity can be tuned by parametersL andp. Also, an
increase in the dimensionality of the lattices implies an
crease of the connectivity of the system. For this reason
the dimensionality increases, the value ofp where the diver-
sity is maximum, decreases.

In these plots, we also observe a phase where the dive
density curves attain a constant value. This phase is cha
terized by a large connected cluster with some very sm
clusters, Fig. 1~c!. Then the diversity of clusters decreas
until it reaches the unity value, as shown in Fig. 1~d!, which
causes the flat regions in the diversity density plots, as sh
in Fig. 2. These flat regions are due to a finite-size effect
these plots we can observe that as the dimension of the
tem increases the flat regions become more evident. H
ever, as the size of the lattice gets larger these regions
come smaller. Consequently, with the increase of the sys
size, those regions should disappear.

The total number of clustersN was also measured in thes
simulations. Figure 3 shows the log-log plots ofN normal-
ized by Ld so that all curves collapse irrespectively of th
lattice size, except forp close to one. This is also due t
finite-size effects, since as the lattice sizeL increases those
regions tends to vanish. Similar to the diversity density plo
the flat regions should disappear with the increase of
lattice size. Also, we can observe that the ratioN/Ld in-
creases withp, reaches a maximum, and decreases af
wards. However, the behavior of these curves are dist
tively different from the diversity density plots, which show
a peaked region around the maximum.
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FIG. 1. Snapshots of a 50
350 square lattice randomly oc
cupied with probabilitiesp50.10,
0.55, 0.75, and 0.95.~a! For p
50.10 the lattice is occupied with
various small and disconnecte
clusters of the same size.~b! At
p50.55 a configuration with
maximum cluster size diversity
emerges.~c! For p50.75 the lat-
tice is characterized by a mai
connected cluster with some ver
small clusters.~d! For p50.90 a
single totally connected cluste
appears.
n

r

t

o
e
r-
tio
.
y

es

o-

xi-
he

m
ex-
um
ers
d

ber
to

en,
B. Entropy

The entropy of the system can be defined as a functio
the probability that an occupied site is part of ans-site clus-
ter. In this system, the number ofs-cluster per lattice site o
normalized cluster numberns is defined as

ns5
number of cluster of sizes

total number of lattice sites
. ~3!

So, the probability that an arbitrary occupied site belongs
a cluster containings sites is given by

ws5
sns

(
s

sns

. ~4!

Consequently, the entropy of the system is defined as

H52(
s

ws ln ws . ~5!

Figures 4 and 5 show the entropy versus the probability
occupation for the one and two-dimensional lattices, resp
tively. The value ofH increases exponentialy until the pe
colation threshold; at this point, a geometric phase transi
occurs and the spanning cluster dominates the system
find the probability associated with the maximum entrop
we usedp with steps of 0.0001 and 0.002 nearP(Hmax) for
d51 and d52, respectively. The inset of these figur
of

o

f
c-

n
To
,

shows the plots ofP(Hmax) versus 1/L. In this way, we de-
termine the probability of maximum entropy at the therm
dynamic limit, which is given byPc(Hmax)50.99760.005,
for the one-dimensional case andPc(Hmax)50.5760.04, for
the square lattice.

In the simulations of the one-dimensional lattice the ma
mum entropy and maximum diversity of cluster size at t
thermodynamic limit is obtained atp approximately equal to
one. In an ideal situation, the probability of the maximu
diversity for the one-dimensional case can be calculated
actly. Suppose a one-dimensional lattice with the maxim
diversity of cluster size. Such a lattice would have clust
with sizes 1,2,3,4,5, . . . sothat the total number of occupie
sites is given by

1121314151•••5
D~D11!

2
. ~6!

The number of empty sites is given by (D21), since one
site is required to separate each cluster.D in these equations
is equivalent to the diversity of the lattice. This leads to

D~D11!

2
1~D21!5L, ~7!

since the total number of occupied sites plus the total num
of empty sites yield the size of the lattice. The probability
find an occupied and an empty site in the lattice is giv
respectively, by
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FIG. 2. Log-log plot of the cluster size diversity density,D/Ld, as a function of the probability of occupation for dimensions 1 to 6. T
following values ofL were used in these simulations. Ford51; L513107(s), 53106(h), 13106(L), 53105(n), 13105(,), 5
3104(1), and 13104(*). For d52; L54000(s), 3000(h), 2000(L), 1000(n), 600(,), 300(1), 100(3), and 60(*). Ford53; L
5250(s), 200(h), 150(L), 100(n), 60(,), and 30(1). For d54; L560(s), 50(h), 40(L), 30(n), 20(,), and 10(1). For d
55; L530(s), 25(h), 20(L), 15(n), 10(,), and 5(1). For d56; L517(s), 15(h), 12(L), 10(n), 7(,), and 5(1).
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FIG. 3. The log-log plot of the collapsing curvesN/Ld as a function of the probability of occupation for different dimensions and lat
sizes. A flat region is observed for a value ofp close to 1. These flat regions became larger with an increase in the dimensionality
system. However, for a larger lattice size these regions became smaller, indicating that this is due to finite-size effects, theref
regions should disappear as the size of the lattice becomes larger.
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FIG. 4. Plot of the entropy ver-
sus the occupation probability fo
the one-dimensional lattice. Th
inset shows the plot of the prob
ability of the maximum entropy as
a function of 1/L. The following
values of L were used in these
simulations: L513107(s), 5
3106(h), 13106(L), 5
3105(n), 13105(,), 53104

(1), and 13104(*), with aver-
ages taken on 1000 to 50 exper
ments.
p5
D~D11!

2L
~8!

and

12p5
D21

L
. ~9!

Substituting the equations and taking the limit we have
p5
D11

D132
2

D

~10!

so that,

lim
D→`

p51. ~11!
0
s

s
.

FIG. 5. Similar to Fig. 4 but
for the two-dimensional lattice.
The following values ofL were
used in these simulations:L
58000(v), 4000(s), 3000(h),
2000(L), 1000(n), 600(,),
300(1), 100(3), and 60(*),
with averages taken on 6000 to 2
experiments. Note that the curve
show a sharp transition afterpc ,
since most of the occupied site
belong to the percolation clusters
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FIG. 6. Plot of the linear fit forp(Dmax) as a function of 1/L for the various dimensions. The intercept of the linear fit gives the va
for critical probability at the thermodynamic limit.
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FIG. 7. The linear fit forp(Nmax) as a function of 1/L for the various dimensions. These plots are similar as in Fig. 4, but for
maximum number of clusters.
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TABLE I. The values of the critical probabilities for the max
mum number of cluster sizepc(Nmax), the maximum cluster size
diversitypc(Dmax), the percolation thresholdpc , and the difference
between the probability of maximum diversity and the percolat
probability Dp, for the different dimensions investigated.Dp
shows thatpc(Dmax) andpc are statistically the same.

d pc(Nmax) pc(Dmax) pc
a Dp

1 0.50160.002 0.99860.005 1 0.00260.005
2 0.27060.002 0.57460.005 0.592746 0.01960.005
3 0.17860.002 0.30760.007 0.3116 0.00560.007
4 0.13360.002 0.19460.007 0.197 0.00360.007
5 0.10360.002 0.13660.007 0.141 0.00560.007
6 0.08760.002 0.10260.009 0.107 0.00560.009

aValues obtained from Ref.@24#.
Consequently, if we consider a one-dimensional latt
with D→`, which implies thatL also goes to infinity, the
maximum diversity is obtained at the exact value ofp51.
That is the same value for the site percolation threshold
the one-dimensional case@24#. The same kind of mathemati
cal reasoning could be applied to the other dimensions.
total number of occupied sites could be estimated in
same way as in the one-dimensional case. However,
empty sites will depend on the external perimeter of the cl
ters, which will lead us to a similar problem as of calculati
the general exact solution for the percolation problem
d-dimension, see@24#. Furthermore, we leave for futur
study an exact solution for the Bethe lattice, since for
percolation problem an exact solution exists and this lat
corresponds in some sense to infinite dimensionality.

n

FIG. 8. ~a! Plot of the critical probability for maximum number of cluster,pc(Nmax), versus the lattice dimensionality.~b! pc(Dmax)
versusd, the fit shown in Eq.~11! was taken ford>2. ~c! The plot of the critical probability for the percolation cluster as a functiond,
similar to ~b!. ~d! Plot of the difference betweenpc(Dmax) andpc , defined asDp versusd.
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FIG. 9. The scaling relation of
Pc(Dmax) versuspc , which indi-
cates that these two critical prob
abilities have the same value.
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C. Critical probabilities

Finite-size scaling analysis was used to determine
critical probabilities associated withDmax and Nmax at the
thermodynamic limit. In Fig. 6 we show the plots ofp(Dmax)
versus 1/L. Using a linear fit of the form

p~Dmax!5VL211P, ~12!

we obtainedP, the critical probabilities atL→` and V,
which is the slope of the curves. The constantV determines
the influence of the size of the system on the probability
maximum diversity. Its importance is discussed in the n
section. The same analysis was used for the maximum n
ber of cluster size as shown in Fig. 7. Table I shows
values ofpc(Dmax) andpc(Nmax) at the thermodynamic limit,
the percolation thresholdpc , and the difference betwee
pc(Dmax) and the percolation thresholdDp, for the various
dimensions. The values ofV are shown in Table II. The
values obtained forDp are always positive since after th
percolation threshold less space is left for the appearanc
different clusters; consequently, diversity attains a low
value. On a finite lattice, the maximum of cluster size div
sity appears before thepc . This can clearly be seen in th
one-dimensional case.

In Fig. 8~a! we show the plot ofpc(Nmax) versus the di-
mension of the system, which yields the following fit:

pc~Nmax!50.516d20.98660.003. ~13!

Figures 8~b! and 8~c! show the plots ofpc(Dmax) and the
critical probability for the percolation clusterpc that, respec-
tively, follows the fits
e

f
t

m-
e

of
r
-

pc~Dmax!51.719d21.57560.005 ~14!

and

pc51.736d21.560. ~15!

The critical probability for the one-dimensional case
not included in these fits, since the curves clearly show
different behavior ford greater than 2. These two fits ar
very similar, although the values ofpc(Dmax) obtained are
smaller than the percolation threshold. The values ofpc were
obtained from Ref.@24#. In Fig. 8~d! we have the plot of the
difference of these probabilities for various dimensions,
the points are very close to zero. The error bars show
statistically the two points are the same. Figure 9 shows
plot of the scaling relation between the two critical probab
ties, giving

pc~Dmax!50.992pc
1.01360.005. ~16!

There is an intrinsic difficulty in finding an exact solution fo
the critical probabilities for the percolation problem. Th
also seems to be the same case for the probability of m
mum diversity.

The one-dimensional percolation problem represent
one-side phase transition with critical probability equal to
Similarly, the probability of maximum diversity appears
be at a specific point. For the one-dimensional case, b
critical probabilities were obtained at the same point,
shown in the last section. For higher dimensions they
shown to be statistically equivalent. Therefore, on the lig
of these evidences, it is reasonable to conjecture that
probability of maximum cluster size diversity and of the pe
colation threshold are the same.
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FIG. 10. Log-log plot ofDmax

versusMT leading to the scaling
Dmax;MT

u for d51(s), 2(h),
3(L), 4(n), 5(,), and 6(3).
The values of the exponentu are
listed in Table II.
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V. SCALING AND COMPLEX SYSTEMS

A. Scaling relations

In Fig. 10, we plottedDmax versusMT for different lattice
sizes and dimensions. HereMT is the total mass capacity o
the system or volume, which can also be defined asLd. The
maximum diversity follows the scale

Dmax;MT
u , ~17!

the values ofu for each dimension are shown in Table II.
By fixing a probabilityp and taking the scaling relation o

D versusL we obtain the exponentsb as a function ofp,

D~L,p!;Lb(p). ~18!

In Fig. 11, we show the plot of this value.b increases
with p, reaches a maximum, and decreases afterwards, s
larly to the diversity plot. This indicates that the rate of i
crease in diversity for different values ofL is higher in the
maximum region. It is interesting to note that ford>3, the
value ofb does not fall constantly. Forp near the value of 1,

TABLE II. The values ofV obtained from Eq.~9!, the exponent

u from the scalingDmax versusMT , andr̄, the average values ofr
from Eq. ~19! for the different lattice dimensions.

d V u r̄

1 2183641 0.5060.01 0.9260.03
2 29.3260.07 0.4960.01 0.4060.03
3 20.1660.04 0.4660.02 0.2860.04
4 0.1460.01 0.4360.02 0.2560.04
5 0.2060.01 0.4160.03 0.2660.05
6 0.1860.01 0.3960.04 0.2960.06
i-

we find a region in which the value ofb increases again
creating a local maximum. This local maximum appears
cause of finite-size effects as a consequence of the fla
gions shown in Fig. 2.

The fact that, for a fixed probability,D(L) scale withL to
the exponentsb implies that the densitiesD/Ld decay as
L (b2d). Therefore, the diversity density varies not only a
cording to the dimension of the system but also according
the size of the system. In this way, the diversity of clust
size measured on a finite system must be rescaled to
rectly correspond to a large system. Figure 12 showsD nor-
malized by Lb for all values of p, so that all the curves
collapse irrespectively of size. Note that the curves
mainly characterized by two maxima ford>2 and there is a
change of behavior in these maxima in between dimens
3 and 4.

B. Sustainability of complex systems

The structural complexity of the system in considerati
has been characterized by the diversity of cluster sizes. E
though this definition has its limitations and is not a fin
measurement of complexity, it is a useful concept for t
understanding of complex systems. Recent studies@14,15#
show that the statistics of cluster size diversity describes w
the complexity in aggregation and fragmentation proces
and has important consequences for a statistical descrip
of the universe. We extend these studies to the rando
occupied lattice, contributing to a better understanding
complex systems.

The relation between the maximum diversity and the to
mass,MT , or volume of the system was found to beDmax

;MT
u . Consequently, the production of diversity in differe

dimensions can be measured by the following ratio@14#:

r5Dmax
1/u /MT . ~19!
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FIG. 11. The exponentsb as a function ofp for the various dimensions. The values ofb were obtained from the scaling relatio
D(L,p);Lb(p). Similarly to the diversity plots,b increases with the probability attaining a maximum and decreases afterwards, exce
d51. Also, for d>3 the curves show a local maximum, which is due to a finite-size effect associated with the flat region as sh
Fig 2.
n

it

ns.

ss
In the present system, the diversity of cluster size depe
only on the probability of occupation. Hence,Dmax

1/u /MT mea-
sures the intrinsic capacity of the system to support divers
The plot in Fig. 13~a! showsr as a function ofd, each point
ds

y.

representing a different lattice size for different dimensio
In Table II, we listed the average values ofr for each di-
mension defined asr̄.

Figure 13~a! shows that high space dimensions are le
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FIG. 12. The collapsing curves of the cluster size diversity normalized byLb as a function ofp, for several lattice sizes and differen
dimensions.
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FIG. 13. ~a! The plot ofr as a
function of the lattice dimension
~b! Plot of V as a function ofd.
The sizes of the system used
these plots are listed in the captio
of Fig 2.
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propitious to sustain diversity. A higher dimension mean
higher connectivity, which implies an easier clustering of t
objects, consequently, a decrease in the diversity of clu
size. As a result, lower dimensions favor the system to s
port a higher diversity or complexity. Ford>3 the values of
r̄ seem to attain a constant, possibly indicating that the
pacity of the system to sustain diversity became invari
irrespective of the space dimension.

In Sec. IV we showed that the probability of maximu

cluster size diversity and the percolation threshold, i.e.,
point of geometric phase transition, are statistically the sa
Figure 8~b! and Eq.~14! show that as the space dimensi
increases the probability to attain a higher diversity d
creases. A lower probability of occupation implies less m
and, consequently, less energy. In this way, the higher
space dimension the less energy is necessary to atta
higher complexity.

In Eq. ~12!, V defines the relation between the probabil
of maximum diversity and the size,L, of the system. For the
1d and 2d caseV is negative, while for the other dimen
sions it is close to zero; see Table II and Fig. 13~b!. A nega-
tive V means that asL increases the probability of maximum
diversity increases, whereasV equal to zero means that th
probability of maximum diversity does not depend on t
system size. As mentioned before, a higher probability
occupation implies more mass and, consequently, more
ergy. As a result, for the dimensions 1 and 2, as the sys
size increases, the energy necessary to attain a more com
state increases. On the other hand, ford>3 the energy nec-
essary to create more complex structures is independe
the system size.

The sustainability of complex structures in the pres
system lies in the balance between the capacity of the sys
to support diversity and the energy necessary to atta
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higher complexity. In agreement with@14,15#, our paper also
indicates thatd53 seems to be optimal for the sustainabili
of a complex system. Our Universe is diverse and enco
passes systems with enormous difference in length sc
from elementary particles to galaxies. We have shown t
for d>3 the energy to attain a higher diversity is indepe
dent of the system size. Also, a balance between lower
mensions that favors higher diversity, and higher dimensi
that require less energy to attain high complexity, seem
be achieved atd53. Consequently, a three-dimensional un
verse is ideal for the sustainability of complex systems.

VI. CONCLUSIONS

In this paper, we described cluster size diversity as a m
surement of complexity, showing that this measuremen
suitable for systems that generate a statistical distribution
clusters. Nevertheless, diversity of patterns as a measure
of complexity has certain limitations, since it does not cov
the organization or hierarchical structure of the syste
which is an important component if one wants to have a
understanding of complex systems@12,25#.

An interesting tuning effect in complexity for the ran
domly occupied lattices was observed. Also critical pro
abilities associated with the maximum of cluster size div
sity and the maximum of number of cluster were report
An entropic measurement based on the probability of an
cupied site belonging to ans-site cluster was derived, show
ing that the maximum entropy is attained at the percolat
threshold. We demonstrated that in an ideal situation
maximum of cluster size diversity and the percolation thre
old for the 1d case are the same. Moreover, similarities
the scaling ofpc(Dmax) and the probability of the percolatio
thresholdpc versus the lattice dimension, give further ev
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dence for the conjecture that the two probabilities, also
the higher lattice dimension, are indeed the same.

The statistics of cluster size diversity show some intere
ing implications for a possible statistical description of t
Universe as a complex system, since we live in a diversi
Universe, which produces structures spanning all poss
length scales. Following the arguments of@14,15#, we pre-
sented further evidence for the sustainability of complex s
tems ford53, which lies in a compromise between the c
, J

a

-

s.

-

-

r

t-

d
le

-
-

pacity of the system to support a diversified structure and
energy necessary to attain this complex state.
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