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Cluster size diversity, percolation, and complex systems
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Diversity of cluster size has been used as a measurement of complexity in several systems that generate a
statistical distribution of clusters. Using Monte Carlo simulations, we present a statistical analysis of the cluster
size diversity and the number of clusters generated on randomly occupied lattices for the Euclidean dimensions
1 to 6. A tuning effect for diversity of cluster size and critical probabilities associated with the maximum
diversity and the maximum number of clusters are reported. The probability of maximum diversity is related to
the percolation threshold and several scaling relations between the variables measured are reported. The
statistics of cluster size diversity has important consequences in the statistical description of the Universe as a
complex system.S1063-651X99)08709-7

PACS numbgs): 05.40—a, 05.10.Ln, 05.70.Fh, 05.70.Jk

I. INTRODUCTION other hand, aggregation is a process opposite to fragmenta-
Diversity is probably one of the main features of interesttlon’ where starting from a empty lattice one generates an

in many natural phenomena. The richness of patterns an%ggregate following certain occupation dynan[@b In both
systems, the processes evolve through time differently from

behaviors in many dynamical systems have drawn the inter- . L .
. ; . randomly occupied lattice in which the measurements are

est of many researchers in various branches of science, €.8:ven over the probabilit

in biology [1], evolution[2,3], self-organization and cellular b Y.

automata[4,5], fractals[6,7], and nonequilibrium phenom- . Another point O.f !ntereSt IS thaF rapdomly occupied Igt—
. L . ; . tices are used as initial configuration in most of the studies
ena[8,9]. The concept of diversity is universal in various

fields of human knowledge. Similarly, the notion of com- on cellular automata. In this way, a proper understanding of

oo : h the clustering at the initial configuration may give more in-
plexity is present in a variety of natural phenomena and can

! . . sight into some aspects of their dynamics, as shown in
be associated with several properties of a system. In mal .
N oo . . . 6,17). Moreover, the system analyzed is closely related to
situations, complexity is related to the diversity of size

scales. Presently, there is no generally accepted definition ct)?e percolation problerf24], even though in this case we are

. ! interested in the behavior of the number and the diversity of
a complexity measure, even though several studies have bee . ) .
X . Clusters size other than the spanning or percolation cluster.
made in attempt towards a complexity measurenjéot : ) .
. .. Still some connections exist between the two models, and we
15]. However, these studies agree that there should exist

. : N . Show a relation between the point of geometric phase transi-
complexity measure, which attains its maximum value for

configurations in between a completely ordered and disorto™ 1-€- the_ appearance of the shanning cluster, and the
dered state point of maximum diversity and maximum entropy.

In the last few years, diversity of size or mass has been Recently, we reported the occurrence of critical probabili-

studied in several dissipative processes and cellular automatgS associated with the maximum of diversfyn,, and the

that generate a distribution of fragments and are of interest if?@ximum number of clustersly,, on a randomly occupied
physics[16,19, chemistry[8], biology [18], and ecology Sduare latticd20,21]. In this paper, we extended those re-
[16,17. Recently, Gomes and co-workei4,15 proposed  sults and determined the values of the critical probabilities
the diversity of size of fragments as a measurement for confor lattices with higher dimensionality. We show the behav-
plexity in aggregation and fragmentation processes. Theger of the cluster size diversity and total number of clusters
studies are of interest since they capture the idea of a conen these lattices and the scaling relations between the vari-
plex configuration in between a completely connected strucables of interest. Also an entropic measurement based on the
ture (initial state, orderedand completely disconnected state probability that an arbitrary occupied site is part ofsasite

with no structure(disorderegl cluster is derived.

In this paper, we are interested in the diversity and the The structure of this paper is as follows: in Sec. Il we
scaling behavior of cluster sizes on randomly occupied latdescribe and mathematically define a quantitative measure-
tices. Note the similarity with the problem of aggregation ment that characterizes complexity in this system. In Sec. Il
and fragmentation processes, even though in the system cowe describe the computer simulations. In sec. 1V the relation
sidered there are no dynamics involved. In fragmentationbetween cluster size diversity and percolation, describing the
the process starts with a single connected cluster that is bréaning effect in diversity, the entropic measurement of the
ken up into various smaller clusters following a specific al-system, and the critical probability associated with the vari-
gorithm. This procedure ends when all of the mass is conables measured. In Sec. V we analyze the scaling relations
sumed or just small and uniform clusters are presentand offer some evidences on the statistical description of the
depending if the fragmentation dynamics follows a consumpuniverse as complex systems. Finally, in Sec. VI we give
tion of mass or a conservation of mass prod@&dsOn the concluding remarks.
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II. DIVERSITY AND COMPLEXITY does not follow a dynamic&orrelation in time, nor do the

. N . sites depend on another site staterrelation in spade Con-
Diversity is one of the most remarkable and 'mportam.sequently, it was possible to perform simulations in very

characteristics in nature. It manifests in several ways and i d : . ;
characterized by a range of different kinds of patterns exhib-Farge lattice sizes without great computational demand.

ited by a system. To define diversity one must work with a
function of interest such as a physical property. This function V. CLUSTER SIZE DIVERSITY AND PERCOLATION
defines the type of pattern structures analyzed in the system
and is generally defined priori by an observer. As a result,
diversity as a measurement of complexity presents an inher- From the point of view of clusters generated by randomly
ent subjective constraint. occupying the sites of a lattice, the probability of occupation
On randomly occupied lattices diversity can be defined a® determines the structures of the clusters in the system.
the amount of different cluster sizes at a fixed probability ofHere, a low value op will generate a lattice occupied with
occupationp. Here a cluster is defined as a collection of various small disconnected clusters of equal size as shown in
occupied sites connected by the nearest neighbors. The sysig. 1(a), while with p close b 1 a totally connected single
tem in consideration has no dynamics and no correlatiogluster appears, Fig(d). An intermediate value gf gives a
between the sites; consequently, the structural complexitgonfiguration with maximum cluster size diversity, FigbjL
can be well defined as the amount of different cluster sizedhe size of the latticé. determines the possible amount of
on the lattice. Moreover, other definitions could be adopted¢luster diversity, since increasing the lattice size results in an
such as a differentiation on cluster forms or lattice animaldncrease in the range of the cluster size scales. Consequently,

A. Tuning effect

[21,22. by changing the parametdrsandp we attain a configuration
The mathematical definition for the total number of clus-not only with great diversity, but also a state in which a
ters is given by spanning cluster percolates the lattice.

In Fig. 2 we show the log-log plot of the diversity density

_ D/LY versus probability of occupation for dimensions 1 to 6
N(p)= < g N(s,p)>, (@ and different values of, in which d is equal to the dimen-
sion of the lattice. Diversity increases exponentially, attains a
and for the diversity of the mass of a cluster, maximum, and then decreases. For every curve the maxi-

mum diversity was obtained in a defined probability. The

shape of these curves shows that the rate of increase in di-
D(p)= < z @[N(s,p)]>. 2) versity is higher at the maximum region. An increase on the

sizeL of the system implies a smaller region massociated

In these expressionsl(s,p) is the number of clusters of with a high diversity or complexity. Consequently, cluster
sizes, in a single experiment. For occupation probabifity ~ size diversity can be tuned by parameterandp. Also, an
O(x), the Heaviside function is defined &(x)=1 if x increase in the dimensionality of the lattices implies an in-
>0 and®(x)=0 otherwise, and the average. .) is over ~ Ccrease of the connectivity of the system. For this reason, as
different experiments. This definition is suitable because it ighe dimensionality increases, the valuepofhere the diver-

a quantifiable macroscopic physical measurement. sity is maximum, decreases.

Even though cluster size diversity is an appropriate mea- In these plots, we also observe a phase where the diversity
surement of complexity for the system studied, we shouldlensity curves attain a constant value. This phase is charac-
keep in mind that it has limitations as a general definition ofterized by a large connected cluster with some very small
complexity, since the pattern structure is defimegtiori and ~ clusters, Fig. c). Then the diversity of clusters decreases

no correlation between these patterns are taken into accouttil it reaches the unity value, as shown in Figd)1 which
causes the flat regions in the diversity density plots, as shown

IIl. SIMULATIONS in Fig. 2. These flat regions are due to a finite-s_,ize effect. In
these plots we can observe that as the dimension of the sys-

We report the behavior of the number of clusters andem increases the flat regions become more evident. How-
diversity of cluster size by performing Monte Carlo simula- ever, as the size of the lattice gets larger these regions be-
tions on Euclidean lattices with dimensions 1 to 6. The lat-come smaller. Consequently, with the increase of the system
tices were randomly occupied with probability ranging from size, those regions should disappear.
p=0.01 top=0.99 with steps of 0.01. However, in the re-  The total number of clustefd was also measured in these
gion near the maximum of cluster size diversity and thesimulations. Figure 3 shows the log-log plots Mfnormal-
maximum number of clusters, we used a more precise valuged by LY so that all curves collapse irrespectively of the
of p with steps of 0.002. For the one-dimensional case théattice size, except fop close to one. This is also due to
probability was extended up to=0.999 99. In these simu- finite-size effects, since as the lattice slzeéncreases those
lations, we have generated lattices with total number of sitesegions tends to vanish. Similar to the diversity density plots,
varying from the order of 10to 10’ with averages taken on the flat regions should disappear with the increase of the
6000 to 50 experiments. lattice size. Also, we can observe that the railéL? in-

We applied the well-known Hoshen-Kopelman algorithmcreases withp, reaches a maximum, and decreases after-
[23] to identify the different cluster sizes, using an IBMsC ~ wards. However, the behavior of these curves are distinc-
computer. The present simulations do not require memorgively different from the diversity density plots, which shows
allocation for the whole lattice, since the generated latticea peaked region around the maximum.
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FIG. 1. Snapshots of a 50
X 50 square lattice randomly oc-
cupied with probabilitiep=0.10,
0.55, 0.75, and 0.95(a) For p
=0.10 the lattice is occupied with
various small and disconnected
clusters of the same siz¢b) At
p=0.55 a configuration with
maximum cluster size diversity
emerges{(c) For p=0.75 the lat-
tice is characterized by a main
connected cluster with some very
small clusters(d) For p=0.90 a
single totally connected cluster
appears.

B. Entropy shows the plots oP(H ) Versus 1. In this way, we de-

The entropy of the system can be defined as a function dermine the probability of maximum entropy at the thermo-
the probability that an occupied site is part ofasite clus- ~ dynamic limit, which is given byP(H ) =0.997+0.005,
ter. In this system, the number sfluster per lattice site or for the one-dimensional case aRg(H 9 =0.57+0.04, for

normalized cluster number, is defined as the square lattice. _ _ _ _
In the simulations of the one-dimensional lattice the maxi-
__number of cluster of sizes mum entropy and maximum diversity of cluster size at the
Ns= total number of lattice sites 3 thermodynamic limit is obtained @tapproximately equal to

one. In an ideal situation, the probability of the maximum
So, the probability that an arbitrary occupied site belongs taliversity for the one-dimensional case can be calculated ex-

a cluster containing sites is given by actly. Suppose a one-dimensional lattice with the maximum
diversity of cluster size. Such a lattice would have clusters
Snhg with sizes 1,2,3,4,5 . . sothat the total number of occupied
Ws= : @ sites is given by

s D(D+1)
] . 1+2+34+4+5+. .. = —(——.
Consequently, the entropy of the system is defined as 2

(6)

The number of empty sites is given bip 1), since one
H=-— ES WsInw. (5) site is required to separate each clusiein these equations
is equivalent to the diversity of the lattice. This leads to

Figures 4 and 5 show the entropy versus the probability of
occupation for the one and two-dimensional lattices, respec- D(D+1) +(D-1)=L @
tively. The value ofH increases exponentialy until the per- 2 ’
colation threshold; at this point, a geometric phase transition
occurs and the spanning cluster dominates the system. T3ince the total number of occupied sites plus the total number
find the probability associated with the maximum entropy,of empty sites yield the size of the lattice. The probability to
we usedp with steps of 0.0001 and 0.002 neRfH,,,) for  find an occupied and an empty site in the lattice is given,
d=1 and d=2, respectively. The inset of these figuresrespectively, by
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FIG. 2. Log-log plot of the cluster size diversity densiB/L¢, as a function of the probability of occupation for dimensions 1 to 6. The
following values ofL were used in these simulations. Fabe1; L=1X107(0), 5x10°(0), 1X10°( ¢ ), 5X10°(A), 1X10°(V), 5
X 10%(+), and X 10*(*). For d=2; L=4000(), 3000(J), 2000(¢ ), 1000(\), 600(V), 300(+), 100(x), and 60(*). Ford=3; L
=250(0), 200@), 150(¢), 100(A\), 60(V), and 30(). Ford=4; L=60(C), 50(), 40(<), 30(A), 20(V), and 10¢). Ford
=5; L=30(0), 25(), 20(<), 15(A), 10(V), and 5(+). Ford=6; L=17(0), 15@), 12(¢), 10(A), 7(V), and 5¢).



2688 I. R. TSANG AND I. J. TSANG PRE 60

d=1 d=2
10° —— e 10° ¢
i 10" [
10™ E E
g 10° =
L 3 C
107 . 10 §_
h o} r O C
< C = 10" &
= s | =z E
10 ? 10—5 ;_
: 10° L
107 |
107 =
10’5 i 1 | 1 1 T T N N N} 10_8 i 1 IR | 1 [ R |
0.0 0.1 1.0 0.0 0.1 1.0
Probability Probability
d=3 d=4
100 % 100 E T T 1T 71T |
10" L 10" &
107 & 107 &
10° L 10° &
© B © £
EI 107 - E' 107 =
10° L 10° -
10° L 10° &
107 L 107 L
10—8 i 1 | 1 1 10'8 i 1 PRI | 1
0.0 0.1 1.0 0.0 0.1 1.0
Probability Probability
10" ¢ 10° ¢ e .
10" L 10" [ .
10° & 107 & 4
10° & 10° & -
§I 107 - El 107 - 2
10° L 10° & .
10° [ 10° L
107 L 107 L
104 i L | L 10‘8 i L TR | L |\\\\|:
0.0 0.1 1.0 0.0 0.1 1.0
Probability Probability

FIG. 3. The log-log plot of the collapsing curvBkLY as a function of the probability of occupation for different dimensions and lattice
sizes. A flat region is observed for a valuem€lose to 1. These flat regions became larger with an increase in the dimensionality of the
system. However, for a larger lattice size these regions became smaller, indicating that this is due to finite-size effects, therefore, those
regions should disappear as the size of the lattice becomes larger.



PRE 60

CLUSTER SIZE DIVERSITY, PERCOLATION, AND . ..

8.0 . . .
1.04 T T T
1.02 =
100 1
6.0 r EE %\D\
o 0.8 - _
0.96 — _
094 L 1 . L s | 1
0.00000 0.00002 0.00004 0.00006 0.00008 0.00010
I 40 - " [
20
0'0 1 L 1 L | 1 L
0.0 0.2 0.4 0.6 0.8 1.0
Probability
D(D+1) g
and
D—1 so that,
1=p=—— €)
Substituting the equations and taking the limit we have
8.0 . . ‘ .
0.60 T T T
0.58 -D B
:!( 0.56 — O -
T 3
6.0 - os4- i i
0.52 L
0.000 0.001 0.002 0.003 0.004 &
L
I 40 - i
2.0 1
0.0 : : : : :
0.0 0.2 0.4 0.6 0.8 1.0

Probability

D+1

2689

FIG. 4. Plot of the entropy ver-
sus the occupation probability for
the one-dimensional lattice. The
inset shows the plot of the prob-
ability of the maximum entropy as
a function of 1L. The following
values of L were used in these
simulations: L=1x107(0), 5
x10°0(0),  1x10%(¢), 5
X10°(A), 1X10°(V), 5x10*
(+), and 1x10%(*), with aver-
ages taken on 1000 to 50 experi-
ments.

lim p=1. (12)

FIG. 5. Similar to Fig. 4 but
for the two-dimensional lattice.
The following values ofL were
used in these simulationsiL
=8000(<), 40000©), 3000(1),
2000(¢), 1000(A), 600(V),
300(+), 100(x), and 60(*),
with averages taken on 6000 to 20
experiments. Note that the curves
show a sharp transition afte.,
since most of the occupied sites
belong to the percolation clusters.
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TABLE |. The values of the critical probabilities for the maxi-

PRE 60

Consequently, if we consider a one-dimensional lattice

mum number of cluster sizp.(Nmay), the maximum cluster size ijth D—o, which implies thatL also goes to infinity, the
diversity p.(Dmad, the percolation thresholol. , and the difference

between the probability of maximum diversity and the per(:olation-l-hat is the same value for the site percolation threshold for

probability Ap, for the different dimensions investigated p

shows thap.(D a0 andp, are statistically the same.

d Pe(Nma) Pc(Dmay) P’ Ap

1 0.5010.002 0.998 0.005 1 0.0020.005
2 0.270:0.002 0.5740.005 0.592746 0.0190.005
3 0.178-0.002 0.30%0.007 0.3116  0.0050.007
4  0.133-0.002 0.1940.007  0.197  0.00830.007
5 0.103-0.002 0.1360.007  0.141  0.0050.007
6 0.087-0.002 0.1020.009  0.107  0.0050.009

avalues obtained from Ref24].

1.0

(@)

d

AP

maximum diversity is obtained at the exact valuepcf 1.

the one-dimensional ca$24]. The same kind of mathemati-
cal reasoning could be applied to the other dimensions. The
total number of occupied sites could be estimated in the
same way as in the one-dimensional case. However, the
empty sites will depend on the external perimeter of the clus-
ters, which will lead us to a similar problem as of calculating
the general exact solution for the percolation problem in
d-dimension, sed?24]. Furthermore, we leave for future
study an exact solution for the Bethe lattice, since for the
percolation problem an exact solution exists and this lattice
corresponds in some sense to infinite dimensionality.

(b)

Pc( Dmax)

01 -

(d)
0.03 : : —

0.02

FIG. 8. (a) Plot of the critical probability for maximum number of cluster,(N.), versus the lattice dimensionalit(h) p.(D may

versusd, the fit shown in Eq(11) was taken ford=2. (c) The plot of the critical probability for the percolation cluster as a functipn
similar to (b). (d) Plot of the difference betweegn,.(D,,,) andp., defined as\p versusd.
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T
1.0
’?Eé FIG. 9. The scaling relation of
a P.(Dmad) Versusp,, which indi-
1y cates that these two critical prob-
abilities have the same value.
0.1 :
L L L L ' L A L '
0.1 1.0
P.
C. Critical probabilities pc(DmaX):1_7lgj—1.575:o.oo5 (14)

Finite-size scaling analysis was used to determine the
critical probabilities associated witB ,,, and N5 at the  and
thermodynamic limit. In Fig. 6 we show the plots @fD 1,4,
versus 1. Using a linear fit of the form p.=1.7361 1560 (15)

Da) = QL 1+11, 12 iy . . : ,
P(Dima) (12 The critical probability for the one-dimensional case is

not included in these fits, since the curves clearly show a
different behavior ford greater than 2. These two fits are

which is the slope of the curves. The const@ntletermines very similar, although th_e values @(D sy obtained are
the influence of the size of the system on the probability Oisrgal_ler(‘;hfan th; pfe;;fOI?t'an thredshold.hThe vr?luercoﬁl?r(he
maximum diversity. Its importance is discussed in the nex .talne rom Ref[24]. In !9'.& ) we ’?‘Vet ontp the
section. The same analysis was used for the maximum nungj_lfference of these probabilities for various dimensions, all
ber of cluster size as shown in Fig. 7. Table | shows th he points are very close to zero. The error bars show that

. Statistically the two points are the same. Figure 9 shows the
;/r? eluzserc::fglcétl? oﬂaﬂhiggﬁéﬁgf,a»aimﬁ éhggmeigﬁggmggtl\llvnlgn plot of the scaling relation between the two critical probabili-
pP.(Dmay and the percolation thresholdlp, for the various ties, giving
dimensions. The values d are shown in Table Il. The 10135 0,005
values obtained foAp are always positive since after the Pe(Dmax) =0.992 7 = (16)
percolation threshold less space is left for the appearance of
different clusters; consequently, diversity attains a lowerThere is an intrinsic difficulty in finding an exact solution for
value. On a finite lattice, the maximum of cluster size diver-the critical probabilities for the percolation problem. This
sity appears before the,. This can clearly be seen in the also seems to be the same case for the probability of maxi-

we obtainedIl, the critical probabilities at. - and Q,

one-dimensional case. mum diversity.
In Fig. 8@ we show the plot op.(Nmad versus the di- The one-dimensional percolation problem represents a
mension of the system, which yields the following fit: one-side phase transition with critical probability equal to 1.

Similarly, the probability of maximum diversity appears to

be at a specific point. For the one-dimensional case, both

Pe(N e = 0.516] 09860003 (13)  critical probabilities were obtained at the same point, as

shown in the last section. For higher dimensions they are

shown to be statistically equivalent. Therefore, on the light

Figures 8b) and 8c) show the plots op.(Dna) and the  of these evidences, it is reasonable to conjecture that the
critical probability for the percolation cluster. that, respec- probability of maximum cluster size diversity and of the per-

tively, follows the fits colation threshold are the same.
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versusM+ leading to the scaling
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3(0), 4(42), 5(V), and 6(x).
The values of the exponers are
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100 . listed in Table II.
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MT
V. SCALING AND COMPLEX SYSTEMS we find a region in which the value g8 increases again

creating a local maximum. This local maximum appears be-

cause of finite-size effects as a consequence of the flat re-
In Fig. 10, we plotted y,, versusM for different lattice  gions shown in Fig. 2.

sizes and dimensions. Hekér is the total mass capacity of — Thg fact that, for a fixed probabilith (L) scale withL to

the system or volume, which can also be definetl @sThe the exponents3 implies that the densitie®/L decay as

maximum diversity follows the scale L(#=9 Therefore, the diversity density varies not only ac-
D ~M¢ 17) cording to the dimension of the system but also according to

max. T the size of the system. In this way, the diversity of clusters
size measured on a finite system must be rescaled to cor-

A. Scaling relations

the values off for each dimension are shown in Table II. rect|y Correspond to a |arge System_ Figure 12 shbwsor-
By fixing a probabilityp and taking the scaling relation of malized byL? for all values ofp, so that all the curves
D versusL we obtain the exponenf8 as a function o, collapse irrespectively of size. Note that the curves are
mainly characterized by two maxima fde=2 and there is a
D(L,p)~LA®), (18 change of behavior in these maxima in between dimensions
3 and 4.

In Fig. 11, we show the plot of this valug increases
with p, reaches a maximum, and decreases afterwards, simi-
larly to the diversity plot. This indicates that the rate of in-
crease in diversity for different values bfis higher in the The structural complexity of the system in consideration
maximum region. It is interesting to note that fde3, the  has been characterized by the diversity of cluster sizes. Even

value ofﬁ does not fall Constanﬂyl Fqu‘near the value of 1, thOUgh this definition has its limitations and is not a final
measurement of complexity, it is a useful concept for the

TABLE II. The values ofQ) obtained from Eq(9), the exponent understanding of.cc_)mplex SyStems' Recer_‘t Stuﬂl@;lﬁ

show that the statistics of cluster size diversity describes well
the complexity in aggregation and fragmentation processes,
and has important consequences for a statistical description

B. Sustainability of complex systems

6 from the scalindd ., versusM, and; the average values pf
from Eq. (19) for the different lattice dimensions.

d Q 0 o of the universe. We extend these studies to the randomly
occupied lattice, contributing to a better understanding of

1 —183+t41 0.50:0.01 0.92:0.03 complex systems.

2 —9.32-0.07 0.49:0.01 0.46:0.03 The relation between the maximum diversity and the total

3 —0.16+0.04 0.46-0.02 0.28-0.04 mass,Mt, or volume of the system was found to D,

4 0.14+0.01 0.43-0.02 0.25-0.04 ~M$. Consequently, the production of diversity in different

5 0.20+0.01 0.41-0.03 0.26-0.05 dimensions can be measured by the following ratid|:

6 0.180.01 0.39%-0.04 0.29-0.06 i

p=Dna/M1. (19
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FIG. 11. The exponentg as a function ofp for the various dimensions. The values @fwere obtained from the scaling relation
D(L,p)~LP® . Similarly to the diversity plotsg increases with the probability attaining a maximum and decreases afterwards, except for
d=1. Also, ford=3 the curves show a local maximum, which is due to a finite-size effect associated with the flat region as shown in

Fig 2.

In the present system, the diversity of cluster size depend®presenting a different lattice size for different dimensions.
only on the probability of occupation. Henda}T{gJMT mea- In Table Il, we listed the average values wffor each di-
sures the intrinsic capacity of the system to support diversitymension defined as.

The plot in Fig. 18a) showsp as a function ofl, each point Figure 13a) shows that high space dimensions are less
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FIG. 12. The collapsing curves of the cluster size diversity normalizetbgs a function of, for several lattice sizes and different
dimensions.
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propitious to sustain diversity. A higher dimension means ahigher complexity. In agreement wifti4,15|, our paper also
higher connectivity, which implies an easier clustering of theindicates thatl=3 seems to be optimal for the sustainability
objects, consequently, a decrease in the diversity of clustef a complex system. Our Universe is diverse and encom-
size. As a result, lower dimensions favor the system to suppasses systems with enormous difference in length scale,
port a higher diversity or complexity. Foi=3 the values of from elementary particles to galaxies. We have shown that
p seem to attain a constant, possibly indicating that the cafor d=3 the energy to attain a higher diversity is indepen-
pacity of the system to sustain diversity became invarianfl€nt of the system size. Also, a balance between lower di-
irrespective of the space dimension. mensions that favors higher diversity, and higher dimensions

In Sec. IV we showed that the probability of maximum that require less energy to attain high complexity, seems to
be achieved atl=3. Consequently, a three-dimensional uni-

clu'ster size diversity and the percolation threshold, i.e., th¢ . ca is ideal for the sustainability of complex systems.
point of geometric phase transition, are statistically the same.

Figure 8b) and Eq.(14) show that as the space dimension
increases the probability to attain a higher diversity de-
creases. A lower probability of occupation implies less mass
and, consequently, less energy. In this way, the higher the In this paper, we described cluster size diversity as a mea-
space dimension the less energy is necessary to attainsarement of complexity, showing that this measurement is
higher complexity. suitable for systems that generate a statistical distribution of
In Eq. (12), Q) defines the relation between the probability clusters. Nevertheless, diversity of patterns as a measurement
of maximum diversity and the siz&, of the system. For the of complexity has certain limitations, since it does not cover
1d and A case(} is negative, while for the other dimen- the organization or hierarchical structure of the system,
sions it is close to zero; see Table Il and Fig(dl3A nega-  which is an important component if one wants to have a full
tive ) means that ak increases the probability of maximum understanding of complex systerfi?,25.
diversity increases, where&s equal to zero means that the  An interesting tuning effect in complexity for the ran-
probability of maximum diversity does not depend on thedomly occupied lattices was observed. Also critical prob-
system size. As mentioned before, a higher probability ofbilities associated with the maximum of cluster size diver-
occupation implies more mass and, consequently, more ersity and the maximum of number of cluster were reported.
ergy. As a result, for the dimensions 1 and 2, as the systerAn entropic measurement based on the probability of an oc-
size increases, the energy necessary to attain a more complexpied site belonging to assite cluster was derived, show-
state increases. On the other hand,der3 the energy nec- ing that the maximum entropy is attained at the percolation
essary to create more complex structures is independent #ireshold. We demonstrated that in an ideal situation the
the system size. maximum of cluster size diversity and the percolation thresh-
The sustainability of complex structures in the presenild for the 1d case are the same. Moreover, similarities in
system lies in the balance between the capacity of the systethe scaling op.(D o0 and the probability of the percolation
to support diversity and the energy necessary to attain thresholdp, versus the lattice dimension, give further evi-

VI. CONCLUSIONS
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dence for the conjecture that the two probabilities, also fopacity of the system to support a diversified structure and the

the higher lattice dimension, are indeed the same. energy necessary to attain this complex state.
The statistics of cluster size diversity show some interest-
ing implications for a possible statistical description of the ACKNOWLEDGMENTS
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